Kimmerle’s Conjecture for Integral Group Rings of Some Alternating Groups
نویسندگان
چکیده
Using the Luthar–Passi method and results of Hertweck, we study the long-standing conjecture of Zassenhaus for integral group rings of alternating groups An, n ≤ 8. As a consequence of our results, we confirm the Kimmerle’s conjecture about prime graphs for those groups.
منابع مشابه
Torsion units in integral group rings of Janko simple groups
Using the Luthar-Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of integral group rings of Janko simple groups. As a consequence, for the Janko groups J1, J2 and J3 we confirm Kimmerle’s conjecture on prime graphs.
متن کاملIntegral Group Ring of Rudvalis Simple Group
Using the Luthar–Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the Rudvalis sporadic simple group Ru. As a consequence, for this group we confirm Kimmerle’s conjecture on prime graphs.
متن کاملIntegral Group Ring of the Mclaughlin Simple Group
We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the McLaughlin sporadic group McL. As a consequence, we confirm for this group the Kimmerle’s conjecture on prime graphs.
متن کاملIntegral Group Ring of the First Janko Simple Group
We investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the simple Janko group J1. As a consequence, for this group we confirm Kimmerle’s conjecture on prime graphs.
متن کاملIntegral Group Ring of the Suzuki Sporadic Simple Group
Using the Luthar–Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the Suzuki sporadic simple group Suz. As a consequence, for this group we confirm the Kimmerle’s conjecture on prime graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011